<div dir="ltr"><div><span style="color:rgb(0,0,0);font-family:Arial,sans-serif;font-size:11pt;white-space:pre-wrap">Desde el Programa de Becas AISAR en AI Safety tenemos el placer de invitarlos a la próxima charla de nuestro seminario online, con la participación de investigadores del área.</span><br></div><div class="gmail_quote gmail_quote_container"><div dir="ltr"><span id="m_-5375221105787092920gmail-docs-internal-guid-de84a13d-7fff-0f53-5f3a-1aa46972366c" style="color:rgb(0,0,0)"><p dir="ltr" style="line-height:1.38;margin-top:12pt;margin-bottom:12pt"><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">📌 </span><span style="font-size:11pt;font-family:Arial,sans-serif;font-weight:700;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Fecha y hora:</span><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"> Miércoles 24 de septiembre, 13:00 hs (ARG).</span><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"><br></span><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">🎤 </span><span style="font-size:11pt;font-family:Arial,sans-serif;font-weight:700;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Orador:</span><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"> Adrià Garriga-Alonso – Research Scientist, </span><a href="https://www.far.ai/" style="text-decoration:none" target="_blank"><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">FAR AI</span><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);font-style:italic;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"><br></span></a><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">📖 </span><span style="font-size:11pt;font-family:Arial,sans-serif;font-weight:700;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Título:</span><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"> </span><span style="font-size:11pt;font-family:Arial,sans-serif;font-style:italic;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Reverse-engineering a neural network that plans: a mesa-optimizer model organism</span></p><p dir="ltr" style="line-height:1.38;margin-top:12pt;margin-bottom:12pt"><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"><span style="font-size:medium;font-family:Arial,Helvetica,sans-serif">🌐</span><span class="gmail-Apple-converted-space" style="font-family:Arial,Helvetica,sans-serif"> </span>👉 <b>Charla online,</b> </span><span style="font-size:11pt;font-family:Arial,sans-serif;font-weight:700;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Inscripción:</span><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"> Para asistir a la charla, por favor indicá tu nombre en el siguiente formulario (No es necesario que completes este formulario si ya indicaste "Quiero que me avisen por correo electrónico cuando haya nuevas charlas de AISAR" en un formulario previo): </span><a href="https://forms.gle/XNDf9uskcRoZ6koW6" style="text-decoration:none" target="_blank"><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">https://forms.gle/XNDf9uskcRoZ6koW6</span></a></p><p dir="ltr" style="line-height:1.38;margin-top:12pt;margin-bottom:12pt"><span style="font-size:11pt;font-family:Arial,sans-serif;font-weight:700;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Abstract: </span><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">We partially reverse-engineer a convolutional recurrent neural network (RNN) trained to play the puzzle game Sokoban with model-free reinforcement learning. Prior work found that this network solves more levels with more test-time compute. Our analysis reveals several mechanisms analogous to components of classic bidirectional search. For each square, the RNN represents its plan in the activations of channels associated with specific directions. These state-action activations are analogous to a value function - their magnitudes determine when to backtrack and which plan branch survives pruning. Specialized kernels extend these activations (containing plan and value) forward and backward to create paths, forming a transition model. The algorithm is also unlike classical search in some ways. State representation is not unified; instead, the network considers each box separately. Each layer has its own plan representation and value function, increasing search depth. Far from being inscrutable, the mechanisms leveraging test-time compute learned in this network by model-free training can be understood in familiar terms.</span><span style="font-size:11pt;font-family:Arial,sans-serif;font-weight:700;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"><br><br></span></p><p dir="ltr" style="line-height:1.38;margin-top:12pt;margin-bottom:12pt"><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Encontrá el paper acá: </span><a href="https://arxiv.org/abs/2506.10138" style="text-decoration:none" target="_blank"><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">https://arxiv.org/abs/2506.10138</span></a></p><p dir="ltr" style="line-height:1.38;margin-top:12pt;margin-bottom:12pt"><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Equipo AISAR</span><span style="font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"><br></span><span style="text-decoration:underline;font-size:11pt;font-family:Arial,sans-serif;font-variant-ligatures:normal;font-variant-alternates:normal;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"><a href="http://scholarship.aisafety.ar/?utm_source=chatgpt.com" style="text-decoration:none" target="_blank">http://scholarship.aisafety.ar/</a></span></p></span></div>
</div></div>