[academica_dat] Seminario AISAR – Thought Anchors: Which LLM Reasoning Steps Matter?

Agustín Martinez Suñé agusmartinez92 at gmail.com
Fri Sep 12 11:46:07 -03 2025


Corrijo fecha: Viernes 19 de septiembre, 09:00 hs (ARG).

El vie, 12 sept 2025 a las 15:39, Agustín Martinez Suñé (<
agusmartinez92 at gmail.com>) escribió:

> Desde el Programa de Becas AISAR en AI Safety tenemos el placer de
> invitarlos a la próxima charla de nuestro seminario online, con la
> participación de investigadores del área.
>
> 📌 Fecha y hora: Viernes 19 de septiembre, 09:00 hs (ARG).
> 🎤 Orador: Paul C. Bogdan – Postdoctoral Researcher, Duke University
> 📖 Título: Thought Anchors: Which LLM Reasoning Steps Matter?
>
> 👉 Inscripción: Para asistir a la charla, por favor indicá tu nombre en
> el siguiente formulario (No es necesario que completes este formulario si
> ya indicaste "Quiero que me avisen por correo electrónico cuando haya
> nuevas charlas de AISAR" en un formulario previo):
> https://forms.gle/wAyCczqeAH7WmwjXA
>
> Abstract:
> Reasoning large language models have recently achieved state-of-the-art
> performance in many fields. However, their long-form chain-of-thought
> reasoning creates interpretability challenges as each generated token
> depends on all previous ones, making the computation harder to decompose.
> We argue that analyzing reasoning traces at the sentence level is a
> promising approach to understanding reasoning processes. We present three
> complementary attribution methods: (1) a black-box method measuring each
> sentence's counterfactual importance by comparing final answers across 100
> rollouts conditioned on the model generating that sentence or one with a
> different meaning; (2) a white-box method of aggregating attention patterns
> between pairs of sentences, which identified "broadcasting" sentences that
> receive disproportionate attention from all future sentences via "receiver"
> attention heads; (3) a causal attribution method measuring logical
> connections between sentences by suppressing attention toward one sentence
> and measuring the effect on each future sentence's tokens. Each method
> provides evidence for the existence of thought anchors, reasoning steps
> that have outsized importance and that disproportionately influence the
> subsequent reasoning process. These thought anchors are typically planning
> or backtracking sentences. We provide an open-source tool (this http URL)
> for visualizing the outputs of our methods, and present a case study
> showing converging patterns across methods that map how a model performs
> multi-step reasoning. The consistency across methods demonstrates the
> potential of sentence-level analysis for a deeper understanding of
> reasoning models.
>
> Encontrá el paper acá: https://arxiv.org/abs/2506.19143
>
> Equipo AISAR
> http://scholarship.aisafety.ar/
> <http://scholarship.aisafety.ar/?utm_source=chatgpt.com>
>


Más información sobre la lista de distribución academica_dat